Pomysł na sztuczne sieci neuronowe powstał w latach 40. XX wieku, ale potrzeba było pokonać mnóstwo problemów, żeby działały tak sprawnie jak dzisiaj. Około 15 lat temu udało się znaleźć sposób na to, żeby tzw. „głębokie” sieci, czyli takie, które składają się z wielu połączonych ze sobą i współpracujących warstw neuronów, mogły się skutecznie uczyć. Wcześniejsze, „płytkie” sieci, potrafiły rozwiązywać relatywnie proste problemy, a sieci „głębokie” uczyły się bardzo wolno lub wcale. Pokonanie tych problemów spowodowało rozkwit sztucznej inteligencji i powstanie rozwiązań do automatycznych tłumaczeń, zamiany głosu na tekst czy rozpoznawania osób na zdjęciach.
ChatGPT: co to jest?
Z technicznego punkt widzenia, ChatGPT to sztuczna sieć neuronowa – struktura danych inspirowana tym, jak zbudowany jest mózg. Sieci neuronowe różnią się od „zwykłych” algorytmów tym, że potrafią się uczyć. Szczególnie użyteczne jest to, że uczą się na przykładach. Nie trzeba im „tłumaczyć” czym na przykład różni się kobieta od mężczyzny. Wystarczy im pokazać prawidłowo oznaczony zbiór zdjęć mężczyzn i kobiet – na podstawie przykładów sieci same się zorientują, jak rozróżniać płeć na zdjęciach, których nie widziały w trakcie nauki.
ChatGPT jest „głęboką” siecią neuronową, ale samo to, że sieć jest „głęboka” nie wystarczy do zadań tak skomplikowanych, jak prowadzenie rozmowy w języku naturalnym. To, co pozwala ChatGPT być tak skutecznym, to mechanizm tzw. „uwagi”. Został opracowany sześć lat temu przez firmę Google i pozwala sieciom neuronowym skupiać się na ważnych fragmentach wypowiedzi i rozumieć, jak poszczególne fragmenty naszych pytań i zgromadzonej przez ChatGPT wiedzy mają się do siebie. Efekt „uwagi”, jak powszechnie wiadomo, jest oszałamiający.
ChatGPT jest tzw. generatywnym AI, czyli sztuczną inteligencją, która nie daje zamkniętych odpowiedzi na pytania np. „czy osoba na zdjęciu to kobieta?”, ale potrafi swobodnie tworzyć treści, odpowiadając nawet na pytania otwarte. Mechanizm działania jest prosty. ChatGPT za każdym razem podaje kolejne najbardziej, jego zdaniem odpowiednie, słowo wypowiedzi.
Warto pamiętać, że ChatGPT nie jest jedynym dostępnym na rynku rozwiązaniem. Szybko rosnącą konkurencją jest np. Claude, stworzony przez firmę Anthropic.
Jak działa ChatGPT i jakie ma ograniczenia?
ChatGPT rozumie co się do niego mówi. Sprawnie analizuje wypowiedzi i prawidłowo reaguje na intencje, np. prośby. Nie oznacza to jednak, że jest jak człowiek, ponieważ brakuje mu szeregu cech, które sprawiają, że ludzie to ludzie. Mechanizm „uwagi” to nie wszystko.
ChatGPT nie ma moralności, sumienia i instynktów społecznych. To znaczy, że jest mu wszystko jedno, jak rozmówca poczuje się z odpowiedzią oraz jakie będą jej konsekwencje. OpenAI bardzo się stara, żeby ChatGPT nie dawał przykrych bądź niezgodnych z normami obyczajowymi odpowiedzi, natomiast wszystkie próby zniechęcania go do tego, mają ograniczoną skuteczność, bo ChatGPT nie rozumie w czym problem.
Co ważniejsze, ChatGPT nie ma racjonalności. Jego kłamstwa biorą się nie tylko z tego, że nie ma z ich powodu wyrzutów sumienia. Po prostu nie wie, że wypisuje bzdury. Nie jest świadomy tego, co robi i nie ma możliwości przemyśleć swoich wypowiedzi.
Jak korzystać z tego rozwiązania?
ChatGPT potrafi przetwarzać informacje, ale nie potrafi kreatywnie rozwiązywać problemów. Sprawdza się w zadaniach, które poznał w procesie uczenia lub w przetwarzaniu danych podawanych w treści zapytań. Dlatego, warto zadawać mu złożone pytania, zawierające wiele szczegółów lub danych, na których ma bazować odpowiedź.
Przykładem takiego pytania może być prośba o korekcję gramatyczną lub interpunkcyjną tekstu, prośba o streszczenie go czy uproszczenie słownictwa tak, żeby było zrozumiałe dla osoby na określonym poziomie znajomości języka. Czym precyzyjniejsze pytania, tym trafniejsze odpowiedzi. Ponieważ ChatGPT pamięta kontekst rozmowy, można i warto zadawać kolejne pytania doprecyzowujące lub dodawać informacje, które pomogą, krok po kroku, osiągnąć zamierzony cel.
System nie radzi sobie z problemami, które są dla niego nowe. Programiści wykorzystują z sukcesem ChatGPT do weryfikacji gotowego kodu, ale kiedy proszą o zaimplementowanie algorytmu, którego nie poznał w procesie uczenia się, dostają w odpowiedzi źle działające fragmenty kodu.
Warto podkreślić, że ChatGPT nie podaje źródeł informacji, a więc jest niewiarygodny i nie nadaje się do szukania odpowiedzi na pytania z dziedzin, na których pytający się nie zna.
Kwestie prawne i bezpieczeństwo
Głównym wyzwaniem w pracy z generatywną AI jest status prawny tworzonych przez nią treści. Aktualnie, polskie prawo, do ochrony praw autorskich wymaga wysiłku intelektualnego człowieka. Z jednej strony oznacza to, że dzieła wytworzone przez AI nie podlegają ochronie patentowej i ochronie praw autorskich. Z drugiej, bardzo trudno wykazać, że dzieło sztucznej inteligencji narusza te prawa, ponieważ, w przypadku głębokich sieci neuronowych, nie jest jasne w jaki sposób opracowały dany utwór i czy proces decyzyjny był „dozwoloną inspiracją” czy plagiatem.
Drugim wyzwaniem w pracy z ChatGPT i analogicznymi rozwiązaniami jest sposób w jaki treści wysłane w trakcie rozmowy mogą być wykorzystywane przez właściciela usługi. Aktualnie, OpenAI może wykorzystywać treść rozmów z ChatGPT do trenowania i usprawniania swojego produktu. Istnieje możliwość zablokowania tego zachowania. W przypadku korzystania z OpenAI API, które jest interfejsem dla programistów, zachowanie jest odwrotne – domyślnie treści rozmów nie są kolekcjonowane, ale można to włączyć, jeśli chce się pomóc w usprawnianiu rozwiązania. Kontrolowanie tego zachowania jest kluczowe dla wszystkich, którzy pracują z danymi poufnymi.
Źródło: materiały prasowe GFT